martes, 12 de abril de 2011

Ecuaciones Cuadráticas.

"Ciencia es deshechar una bonita teoría por un asqueroso hecho".  
Thomas Henry Huxley (1825-1895); biólogo inglés.               XD

La teoría de las ecuaciones tiene aplicaciones en todas las ramas de las matemáticas y de las ciencias.

Una ecuación polinómica tiene la siguiente forma general:
a0 + a1x1 + a2x2 + ... anxn = 0
en donde los coeficientes a0, a1, ..., an son números cualesquiera. El grado de una ecuación polinómica es igual al número entero positivo n, si an ≠ 0. Una raíz es un valor de la x tal que al sustituir dicho valor en la ecuación polinómica se obtiene 0 = 0. Para resolver una ecuación polinómica, hay que encontrar todas las raíces de la ecuación.
Una ecuación lineal es una ecuación de primer grado que sólo tiene una raíz. La única raíz de la ecuación lineal ax + b = 0 es x = -b/a. La ecuación cuadrática, o de segundo grado, ax2 + bx + c = 0, tiene dos raíces, dadas por la fórmula

 




COMIENZOS
Hasta el siglo XVII, la teoría de ecuaciones estuvo limitada pues los matemáticos no fueron capaces de aceptar que los números negativos y complejos podían ser raíces de ecuaciones polinómicas. Sólo los antiguos matemáticos indios, como Brahmagupta, conocían las raíces negativas, pero fuera de China e India no se trabajaba con coeficientes negativos en los polinomios. En vez de un solo tipo de ecuación de segundo grado, el mencionado más arriba, había seis tipos distintos, según cuáles fueran los coeficientes negativos. 
Un método de resolución de ecuaciones que puede encontrarse en antiguos libros egipcios y chinos, es el de la falsa posición. Por ejemplo, para resolver la ecuación x + x/7 = 19, primero se toma una aproximación de la x que simplifique el cálculo del primer término, como x = 7. Al sustituir la x por 7 en esta ecuación, el resultado es 8 en vez de 19. Por tanto, se necesita un factor corrector que se obtiene dividiendo 19 por 8. Este factor, 2, se multiplica por el primer valor, 7, con lo que se encuentra que la raíz de la ecuación original es 16š. Los egipcios utilizaban el método de la falsa posición para encontrar una raíz en ecuaciones de segundo grado sencillas. Para ecuaciones cuadráticas con un término en x, como x2 - 5x = 6, las primeras soluciones no se encuentran hasta en los libros de matemáticas babilonios del 2000 a.C. Aunque los babilonios no conocían las raíces negativas ni las complejas, su método de búsqueda de las raíces positivas reales es el mismo que se utiliza en la actualidad.
Otro importante descubrimiento del mundo antiguo, que se puede encontrar en los escritos del matemático y científico griego Herón de Alejandría en el siglo I, es un método de aproximación de la raíz positiva de ecuaciones como x2 = 2. En este método, primero se toma una aproximación como para calcular una nueva aproximación utilizando la regla [ + 2/()]/2, o 17/12. Si se repite este procedimiento se obtiene 577/408, que es una buena aproximación de Ã. Estas aproximaciones y cálculos repetidos se denominan iteraciones. Un método iterativo muy útil, que se encuentra en los trabajos de los matemáticos chinos Liu Hui (en el siglo III) y Chu Shih-Chieh (en el siglo XIII), fue redescubierto en Europa hacia 1800 por el matemático inglés W. G. Horner. También había sido usado por el matemático árabe Yamschid al-Kaschi. Entre otros matemáticos árabes que hicieron importantes contribuciones a la teoría de ecuaciones se incluyen al-Jwarizmi y Omar Jayyam, que desarrollaron la primera teoría de las ecuaciones cúbicas. Sin embargo, esta teoría estaba definida en términos geométricos y era, por tanto, incompleta.




SOLUCIONES GENERALES
En 1545 el matemático italiano Gerolamo Cardano publicó una solución algebraica para las ecuaciones de tercer grado en función de sus coeficientes y Niccolò Tartaglia la desarrolló. Poco después, Ludovico Ferrari, alumno de Cardano, encontró una solución algebraica para las ecuaciones de cuarto grado. 
En 1629 el matemático francés Albert Girard aceptó raíces de ecuaciones tanto negativas como complejas y fue, por tanto, capaz de finalizar el aún incompleto estudio que François Viète había realizado sobre la relación entre las raíces de una ecuación algebraica y sus coeficientes. Viète había descubierto que si a y b son las raíces de x2 - px + q = 0, entonces p = (a + b) y q = a·b.
Generalizando, Viète demostró que si el coeficiente del término de mayor grado de la ecuación p(x) = 0 es la unidad, entonces el coeficiente del segundo término de mayor grado cambiado de signo es igual a la suma de todas las raíces; el coeficiente del tercer término es igual a la suma de todos los productos formados al multiplicar las raíces de dos en dos; el coeficiente del cuarto término cambiado de signo es igual a la suma de todos los productos que resultan de multiplicar las raíces de tres en tres. Si el grado de la ecuación es par, el coeficiente del último término es igual al producto de todas las raíces; si es impar, es el producto de todas las raíces cambiado de signo. Viète también aportó importantes métodos numéricos para encontrar aproximaciones a las raíces de una ecuación.
En 1635 el matemático y filósofo francés René Descartes publicó un libro sobre la teoría de ecuaciones, incluyendo su regla de los signos para saber el número de raíces positivas y negativas de una ecuación. Unas cuantas décadas más tarde, el físico y matemático inglés Isaac Newton descubrió un método iterativo para encontrar las raíces de ecuaciones. Hoy se denomina método Newton-Raphson, y el método iterativo de Herón mencionado más arriba es un caso particular de éste.
A finales del siglo XVIII, el matemático alemán Carl Friedrich Gauss demostró que cualquier ecuación polinómica tiene al menos una raíz. Sin embargo, quedaba aún por saber si era posible expresar esta raíz con una fórmula algebraica utilizando los coeficientes de la ecuación, como se había encontrado para las de segundo, tercer y cuarto grado. El astrónomo y matemático francés Joseph Lagrange dio un paso importante para resolver esta cuestión con su método de permutación de las raíces de una ecuación para el estudio de sus soluciones. Este fructífero concepto, junto con los trabajos del matemático italiano Paolo Ruffini, del noruego Niels Abel y del francés Évariste Galois, condujo a una teoría completa de los polinomios. Entre otras cosas, esta teoría demuestra que un polinomio sólo se puede resolver utilizando una fórmula algebraica general si es de cuarto grado o menor. El trabajo de Galois también sirvió para resolver dos famosos problemas que se remontaban a los antiguos griegos: Galois demostró que es imposible dividir algunos ángulos en tres partes iguales utilizando sólo el compás y la regla recta, y que es imposible construir un cubo cuyo volumen sea dos veces el de un cubo dado.

TRIGONOMETRÌA

Historia de la Trigonometría


El origen de la palabra TRIGONOMETRÍA proviene del griego "trigonos" (triángulo) y "metros" (metria).Los babilonios y los egipcios (hace más de 3000 años) fueron los primeros en utilizar los ángulos de un triángulo y las razones trigonométricas para efectuar medidas en agricultura y para construir pirámides. Posteriormente se desarrolló más con el estudio de la astronomía mediante la predicción de las rutas y posiciones de los cuerpos celestes y para mejorar la exactitud en la navegación y en el cálculo del tiempo y los calendarios.

El estudio de la trigonometría pasó después a Grecia, donde destaca el matemático y astrónomo Griego Hiparco de Nicea. Más tarde se difundió por India y Arabia donde era utilizada en la Astronomía. Desde Arabia se extendió por Europa, donde finalmente se separa de la Astronomía para convertirse en una rama independiente de las Matemáticas.

A finales del siglo VIII los astrónomos Árabes trabajaron con la función seno y a finales del siglo X ya habían completado la función seno y las otras cinco funciones. También descubrieron y demostraron teoremas fundamentales de la trigonometría.

A principios del siglo XVII, el matemático John Napier inventó los logaritmos y gracias a esto los cálculos trigonométricos recibieron un gran empuje.

A mediados del siglo XVII Newton encontró la serie para el sen x y series similares para el cos x y la tg x. Con la invención del cálculo las funciones trigonométricas fueron incorporadas al análisis, donde todavía hoy desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas.

Por último, en el siglo XVIII, el matemático Leonhard Euler demostró que las propiedades de la trigonometría eran producto de la aritmética de los números complejos y además definió las funciones trigonométricas utilizando expresiones con exponenciales de números complejos.
 

Razones trigonométricas en un triángulo rectángulo

gráfica

Seno

El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa.
Se denota por sen B.
razones

Coseno

El coseno del ángulo B es la razón entre el cateto contiguo al ángulo y la hipotenusa.
Se denota por cos B.
razones

Tangente

La tangente del ángulo B es la razón entre el cateto opuesto al ángulo y el cateto contiguo al ángulo.
Se denota por tg B.
razones

Cosecante

La cosecante del ángulo B es la razón inversa del seno de B.
Se denota por cosec B.
razones

Secante

La secante del ángulo B es la razón inversa del coseno de B.
Se denota por sec B.
razones

Cotangente

La cotangente del ángulo B es la razón inversa de la tangente de B.
Se denota por cotg B.
razones

Razones trigonométricas en una circunferencia

Se llama circunferencia goniométrica a aquélla que tiene su centro en el origen de coordenadas y su radio es la unidad.
En la circunferencia goniométrica los ejes de coordenadas delimitan cuatro cuadrantes que se numeran en sentido contrario a las agujas del reloj.
QOP y TOS son triángulos semejantes.
QOP y T'OS′ son triángulos semejantes.


El seno es la ordenada.
El coseno es la abscisa.
-1 ≤ sen α ≤ 1
-1 ≤ cos α ≤ 1
dibujo

razones
razones
razones

Signo de las razones trigonométricas

gráfica

Tabla de razones trigonométricas

tabla

Relaciones entre las razones trigonométricas

cos² α + sen² α = 1
sec² α = 1 + tg² α
cosec² α = 1 + cotg² α

Relaciones entre las razones trigonométricas de algunos ángulos

Ángulos complementarios

Razones
Razones
Razones

Ángulos suplementarios

Razones
Razones
Razones

Ángulos que difieren en 180°

razones
Razones
Razones

Ángulos opuestos

Razones
Razones
Razones

Ángulos negativos

Razones
Razones
Razones

Mayores de 360º

Razones
Razones
Razones

Ángulos que difieren en 90º

Razones
Razones
Razones

Ángulos que suman en 270º

Razones
Razones
Razones

Ángulos que difieren en 270º

Razones
Razones
Razones

Razones trigonométricas de la suma y diferencia de ángulos

Suma y diferencia de ángulos
Suma y diferencia de ángulos
Suma y diferencia de ángulos
Suma y diferencia de ángulos
Suma y diferencia de ángulos
Suma y diferencia de ángulos

Razones trigonométricas del ángulo doble

Ángulo doble
Ángulo doble
Ángulo doble

Razones trigonométricas del ángulo mitad

Ángulo mitad
Ángulo mitad
Ángulo mitad


Transformaciones de sumas en productos

Transformaciones de sumas en productos
Transformaciones de sumas en productos
Transformaciones de sumas en productos
Transformaciones de sumas en productos

Transformaciones de productos en sumas

Transformaciones
Transformaciones
Transformaciones
Transformaciones

Definición y medida de ángulos


Un ángulo es la región del plano comprendida entre dos semirrectas con origen común.
ángulo
A las semirrectas se las llama lados del ángulo.
El origen común es el vértice.
El ángulo es positivo si se desplaza en sentido contrario al movimiento de las agujas del reloj y negativo en caso contrario

Medida de ángulos

Para medir ángulos se utiliza el sistema sexagesimal.
Grado sexagesimal es la amplitud del ángulo resultante de dividir la circunferencia en 360 partes iguales.
Un grado tiene 60 minutos (') y un minuto tiene 60 segundos ('').
1º = 60' = 3600''
1' = 60''

Radianes

Un radián (rad) es la medida del ángulo central de una circunferencia cuya longitud de arco coincide con la longitud de su radio.
radián
1 rad= 57° 17' 44.8''
360º = 2pirad
180º = pirad
30ºflecha rad
pasar a radianes
pi/3 rad flecha º
Pasar a grados

Ejercicios

Expresa en grados sexagesimales los siguientes ángulos:
13 rad
solución
solución

22π/5rad.
solución

33π/10 rad.
solución

Expresa en radianes los siguientes ángulos:
1316°
radianes

2 10°
radianes

3 127º
radianes


Identidades fundamentales

cos² α + sen² α = 1
sec² α = 1 + tg² α
cosec² α = 1 + cotg² α
cosecante
secante
cotangente

Suma y diferencia de ángulos

Suma y diferencia de ángulos
Suma y diferencia de ángulos
Suma y diferencia de ángulos
Suma y diferencia de ángulos
Suma y diferencia de ángulos
Suma y diferencia de ángulos

Teorema de los senos

Cada lado de un triángulo es directamente proporcional al seno del ángulo opuesto.





teorema de los senos
Esquema

Teorema del coseno

En un triángulo el cuadrado de cada lado es igual a la suma de los cuadrados de los otros dos menos el doble producto del producto de ambos por el coseno del ángulo que forman.
del coseno

Teorema de las tangentes

teorema de las tangentes

Teorema del coseno

un triángulo el cuadrado de cada lado es igual a la suma de los cuadrados de los otros dos menos el doble producto del producto de ambos por el coseno del ángulo que forman.
del coseno

 
Resolver un triángulo consiste en hallar sus lados, ángulos y área.
Para resolver un triángulo rectángulo se necesita conocer dos lados del triángulo, o bien un lado y un ángulo distinto del recto.
Dependiendo de los elementos que conozcamos, nos encontramos con cuatro tipos de resolución de triángulos rectángulos:

 

1. Se conocen la hipotenusa y un cateto


 
Discusión
Discusión
Discusión
Triángulo

 

2. Se conocen los dos catetos

Discusión
Discusión
Discusión
Triángulo

 

3.Se conocen la hipotenusa y un ángulo agudo


 
Discusión
Discusión
Discusión
Triángulo

 

4. Se conocen un cateto y un ángulo agudo


 
Discusión
Discusión
Discusión
Triángulo

 








Funciones trigonométricas


 

Función seno

f(x) = sen x

Función

Características de la función seno

Dominio: Erre
Recorrido: [-1, 1]
Período: Propiedades
Impar: sen(-x) = -sen x

 

Función coseno

f(x) = cos x

Función

Características de la función coseno

Dominio: Erre
Recorrido: [-1, 1]
Período: Propiedades

 

Función tangente

f(x) = tg x

Función

Características de la función tangente

Dominio: Propiedades
Período: Propiedades

 

Función cotangente

f(x) = cotg x

función

Características de la función cotangente

Dominio:Propiedades
Recorrido: Erre
Período: Propiedades

 

Función secante

f(x) = sec x

Función

Características de la función secante

Dominio: Propiedades
Recorrido: (- ∞, -1] Unión [1, ∞)
Período: Propiedades

 

Función cosecante

f(x) = cosec x

Función

Características de la función cosecante

Dominio: Propiedades
Recorrido: (- ∞, -1] Unión [1, ∞)
Período: Propiedades